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Electromagnetic energy and energy flows in photonic crystals made of arrays
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We consider electromagnetic propagation in two-dimensional photonic crystals, formed by parallel dielectric
cylinders embedded a uniform medium. The frequency band structure is computed using the standard plane-
wave expansion method, and the corresponding eigenmodes are obtained subsequently. The optical flows of the
eigenmodes are calculated by a direct computation approach, and several averaging schemes of the energy
current are discussed. The results are compared to those obtained by the usual approach that employs a group
velocity calculation. We consider both the case in which the frequency lies within passing band and the
situation in which the frequency is in the range of a partial band gap. The agreements and discrepancies
between various averaging schemes and the group velocity approach are discussed in detail. The results
indicate that the group velocity can be obtained by an appropriate averaging method. Existing experimental
methods are also discussed.
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[. INTRODUCTION asked about this group velocity approach. The first question
is whether such an averaged energy flow can fully depict

Photonic crystalgPC’s) are usually made of periodically tual elect " f - iodi dia S
structured materials which are sensitive to electromagnetif‘i‘C ual electromagnetic energy Tows In periodic media. sec-
ond, since in actual measurements it is often hard to detect

waves and have been studied both intensively and exten—h sical quantities within the periodic media, how to obtain
sively [1-4]. Research of waves in periodic media was firstP"Y q P '

put on a theorematic basis by Blogh] and Brillouin [6] the group velocity without having to put a detector into the

towards electronic systems. An early survey was given in th% Si?lafrnoerﬁdsr:(lji?:atlo r22acsc1)1r;zlr(rj1irnetg i??gl;ggg;:eirgrgg&:/te'
excellent textbook irf2,7]. The general aspects of electro- y P P

magnetic waves in photonic crystals are furthered reviewe{fosvt tlcr)] r%?gtfnIrcagtri)c/ztlar;(razs:‘si&:(recmhér?t)éplel/ﬁlrgl)tlh;herc?xeité?gcilts
in Refs.[2—4]. A comprehensive survey of the literature can P group Y

be referred to Ref[8]. which can be derived theoretically from the band structure

The propagation of electromagnetic waves in crystalcalcma“on'

structures is one of the top issues in the research of phOtOnié:x;ntliengligzosﬁegii;:eof Leosvsr\]/;[/ellalatrr)wir (I;S\/,Z\V\:;Ogigl?jés(,)c?i%ést;g
crystals. The common theoretical approach to electromag: 4

netic propagation in periodic media has been given in Re ctual electromagnetitEM) energy flow in periodic struc-

[2] and may be summarized as follows. The Maxwell equa_tures. Such a question has also been asked recently from a

ions are first derved for waves in periodio media. By thecy S8 FERREEUSL L L B mCoen e et near
Bloch theorem, the solution can be expanded in terms o y ’

plane waves. The solution is then substituted into the gov-hr(e) 'gt(;rtfiicegir\évg:iorzaoﬁemtgﬁofh\:ﬁ rrlgtli?:“\(/jv ;\% p;%ﬁl;% tlﬁzre
erning equations to obtain an eigenequation that determiné)se ?Mﬁ notgconsider the finite-size effect. We [c):omparé the
the dispersion relations between the frequency and the wa eraged energy flow obtained from the GVA with results

vector that lies within the first Brillouin zone. These relationsfr m direct computation of the enerav current. The second is
are termed as frequency band structures. Since it has be g : P Ty ’ ;
0 consider the issue how to obtain the group velocity from

proved [2,9] that the averaged energy velocity equals the

group velocity which can be obtained as the gradient of th rgctical perspectives. Various schemes are prpposed to ob-
dispersion relations with respect to the space of wav ain the averaged current and compared, so to find the appro-

vectors—i.e., i,=Viw—the investigation of electromag- priate schemes in deducing the group velocity in practical
g measurements.

netic propagation in periodic structures is thus reduced to the There are mainly two experimental ways of obtaining the

g?]lit;u;atl?gaifhtgz grboeu% r\ﬁe?fg)é tfrr](()am rtohue ?liTgCi?tr:cturr()e:. roup velocity[11-15. One is to measure the peak delays of
PP y group y app he transmitted pulses through a slab of periodic structures.

(GVA)' . The second method is to measure the phase speed first and
Since the average of the energy velocity, represented b% ) . L .
) - - .0F en find the group velocity from the derivative of the dis-
the Poynting vecto(S)~(ExH), is performed over the persion curve. Both methods can obtain the group velocity
whole unit cell of periodic media, a few questions may bealong certain directions—i.e., the component along the mea-
suring directions. For example, Pagieal. [14] used the first
method to measure the group velocity along one direction for

*Electronic address: zhen@shaw.ca the sonic crystals. For highly nonuniform and anisotropic
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PC's—i.e., the energy flow and intensity are spatially inho- 1

mogeneous and direction dependent—proper averaging

schemes and measurements at different orientations have to

be taken in order to obtain the full picture of the group ve-

locity. Add|t|c_>naJIy, tbere is a subtle point. As g|ven later, the By Bloch's theorem, the solution to Eql) can be ex-

group velocityv,=Vgw corresponds to spatially averaged pressed as

energy flows. How the spatial average group is related to the i

averaging from a time series of signals in the measurement is pe(F) = €XTu(r), (3)

not immediately clear from the mathematical point of view. R

To our best knowledge, these questions have not been cowhereK is the Bloch vector that lies within the first Brillouin

sidered in the literature. zone andy is a periodic function with the periodicity of the
To simplify our discussion yet without losing generality; medium; thereforepy is the eigenfield corresponding to the

we wil iny con§|der the propagation of eI.ectr.omagnencBlock vectorK. The functionug can be expanded as
waves in two-dimensional periodic media—i.e., two-

d!mens!onal_photonlc crystals—wh|_ch are made of arrays _of uc(M) = D AL(G)eC. (4)
dielectric cylinders. A reason for using this type of system is -
that the systems are experimentally ready, and therefore the
conclusion derived from the present paper can be verified. Substituting Eqs(2) and(3) into Eqg. (1), we obtain
The significance of the present research is twofold. First, it .. - - o - -
provides some useful information about how to obtain the 2 {g(GDI(K + Gy) - (K + Gy + Gy)] - w’x(G)}AK(G) = 0.
group velocity. Second, it shows under what conditions the G,
group velocity approach is valid. (5)

The paper is structured as follows. In the next section, we
will present the usual formulation of Maxwell’'s equations for From this equation, we can find a secular equation that de-
EM waves in periodic structures. The energy flow will be termines the dispersion relation betwesrandK:
formulated, and the GVA will be outlined in general. In Sec. .. oL .
lll, the particular system will be discussed, and a few aver- de{a(Gy[(K +Gp) - (K + G+ Gp] - 0’x(G)}g 6, = 0.
aging schemes of the energy current will be proposed. The 6)
numerical results for a number of situations will be presented
in Sec. IV. The paper will be concluded by a summary inOnce the dispersion relation is determined, the coefficients

Sec. V. AZ(G) can be obtained from Eg5). The EM waves can be
subsequently obtained from Eq8) and (4).
Il. GENERAL FORMULATION When either the electricdt or magnetic fieldH is deter-
A. Retrospect: Bloch wave solution, energy current, mined, corr(.—:‘spondlng .to t.heor p polarization, res»pectlvely,
and energy density the magnetic or electric field for the Bloch vectércan be

. . . . determined from
The EM waves in two-dimensional media can be sepa-

rated into two cases of polarizatioft) the s polarization or V X Hi=-iwe(NE;, orV X Ex=iondHE, (7)
the E polarization—that is, the electric field is along the _
axis perpendicular to the plane of propagation, which is thavhere we have assumed“' time dependence.
plane of the periodicity—an(®) the p polarization or theH By Eq.(7), the time-averagefiux of energy at any spatial
polarization, with the magnetic field being perpendicular topoint is subsequently obtained from
the plane of propagation. Here we outline the determining 1
equations for EM propagation in two-dimensional periodic Ji(P) = ZREER(P) x H(D)], (8)
media. The details can be referred to in R¢&3] 2 K

For both polarizations, the governing equation can be uni
fied as[4]

1. 2 JGF L Sl
)2 o(G)€CT, Czq—%)((G)e : (2)

whereG is the reciprocal vectors.

G

where *” refers to the complex conjugate operation. And
the time-averaged energlensityis

0.)2

- (1= ~ 1
v (;Vp@> t2egP =0 @ UR(D) = J[eMIEDR + DM ()

where c?=cg/ e(Nu(r) with Co belqg the IIth_ speed_ N From these two equations, we can directly calculate the EM
vacuum, angh andq are two-dimensional periodic functions, energy flow and density.

depending on the properties of the medium. Forglpelar-
ization, p stands forE,, with p(")=u(r) andq() = u(r). For

the p polarization,p denotes the magnetic field, perpen- B. Group velocity approach
dicular to the wave propagation. In this capér) = (r) and In principle, the EM propagation in periodic media can be
q(r)=e(r). inferred from a direct calculation using Eqg&) and (9).

Due to the periodicity, we can make the expansions However, it is common to use the group velocity method to
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discern the EM energy flows in periodic media. This ap-
proach is based on the following theordi@]. The group

velocity in periodic media is defined as J
£ R 1 4
—>

Ug= Vio. (10) A
The energy velocity in the periodic media is defined as

Elezda’r > Ve
.V 0 Y
(v = = (11) t -> X
lfUd3r W K 1
v L. o

X
whereV is the volume of a unit cell, and the integration is D c

performed in the unit cell. In two dimensions, this equation
is reduced to

FIG. 1. Conceptual layout of the EM energy flow in a unit
cell.

1(- 5
— | Jgdr 3.
S (I . ,
= Uy (12 cylinders are arranged to form a square latti@-. The lat-
}f Ugd?r (U tice constant i, and the radius of the cylinders is @;3n
S the computation, all lengths are scaled by the lattice constant.
with S being the area of a unit cell and the integration being.(s) The unit for the angular frequency |37?/a. After scal-
restricted to the unit cell. It can be prove] that ing, the systems become dimensionless; thus, the features

discussed here would be applicable to a wider range of
<Je> - Jg - 6}2“’ (13) situations.

(Ve =

This equation will be referred to as the equivalency theorem. B. Various averaging schemes

By Eq. (13), the task of finding the EM propagation in  To compare the energy current determined from the GVA
periodic Inedia is reduced to calculating the group velocity—with that obtained from the direct computation method, we
i.e.,U4=Vx. This procedure may be called the group veloc-take the following procedure. Due to the periodicity and
ity approach. As the group velocity is relatively easy to besymmetry, it is sufficient to just consider the energy current
calculated from the band structures, this method has bedf @ unit cell, which takes the square shape. For a given
widely used. frequency, a Block wave vectd¢ can be determined from

From Eq.(12), we see that the spatial average of the curthe secular equation for the band structure in &j). The
rent is taken over the whole area of the unit cell for two-4.o5 velocity will then be calculated fdf from the band
dimensional cases. Experimentally, the energy flux is nOrgyrctyre according to Eq10). This consideration is illus-
mally determined by measuring currents flowing throughyated by Fig. 1. Here, the coordinates are shown in the
certain surfaces. In the following, we will examine whether g re.
and when the spatially averaged currents can represent thé According to the aforementioned equivalency theorem,
actual flows. We will examine a few averaging schemes. e direction of the group velocity will be the direction of the

spatially averaged EM energy current or velocity given by

Ill. SYSTEMS AND THE VARIOUS AVERAGING Eq. (12—i.e.,
SCHEMES 1
In the following, we will compare the energy flux ob- )= éJ drJ. (14
tained from the GVA with the results from the direct compu- s
tation of the current given by Eg8). We note that the integration is performed over the whole
area of the unit cell, which includes the areas occupied by the
A. System scatterers. In actual experiments, it is often difficult to probe

. . . the currents within the areas taken by the scatterers; there-
. The systems considered here are two-ghmengona! phOt%re, we may replace the whole integration by a partial
nic crystals made of arrays of parallel dielectric Cyl'ndersintegration:
placed in a uniform medium, which we assume to be air.

Such systems are common in both theoretical simulations or -1 -

experimental measurements of two-dimensional PGk ( >:§f, d-rJ. (15
For brevity, we only consider th&-polarized wavegTM

mode; that is, the electric field is kept parallel to the cylin- Here the integration is performed over the aawhich
ders. The following parameters are used in the simulationexcludes the areas occupied by the

(1). The dielectric constant of the cylinders is 14, and thescatterers.
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g
o

In practice, the EM energy current through this unit cell

can also be calculated from the flux across the two sides of <x
the cell denoted byAB andBC—i.e., SE—" | ]

|y~J dxJ- ¥, |X~J dyJ- &. (16)
AB BC

HereJ is given by Eq.(8).
We will compare the results in Eq44)—16) with that

o
(4]

o
kS

)
o
R €

Frequency (wa/2nc)
o
(2]

obtained in Eq(13) by the GVA: N
M

I9VA~ (Viw) 9, 1SVA~ (Vgw) -, (A7) o1 o A
In the present paper, we label the averaged current in Eq. “ X v Y
(16) as case 1, that in Eql4) as case 2, and that in EG.5) Band Structure
as case 3.

To simplify our discussion, we will compare the ratio be- FIG. 2. The band structure of a square lattice of dielectric cyl-

tween the averaged current in two directions. inders. The lattice constant & and the radius of the cylinders is

The GVA caseThe angle of the group velocity is deter- 0.3a. I'M andI'X denote thg11,1Q directions, respectively.

mined as
- [ Uerly
V w - =
deva= tan"l( > )A/) . (189 st (<JCB>><) 2

Viw - X

Case 11,/1, from Eq.(16). We represent the ratio by the i Case 5 (Jagly/ (Jag)x from Eq.(22). The associated angle

angle

¢1=tan-1<'l>, (19) ¢s=tarm <<JAB> ) (25)
Ix (Inp)x

Case 2(J),/(J)x from Eq.(14). The corresponding angle Case 6 (<jAB>+<jCB>)y/(<‘]AB>+<JCB>)x from Egs. (22)

is and(23). The associated angle is
J
go=tart{ v}, (20) - arrt| @+ Gea)y |
%) P =tan (26)
R R X (<JAB> + <‘]CB>)X
Case 3 I/ ()« from Eqg. (15. The corresponding Since the energy or the current fields in the areas occupied
angle is by the scatterers may not be easy to detect, there is another
<j'> possibility in cases 4, 5, and 6. That is, the contributions
¢y =tar <_¥) (21)  from these areas are excluded. Later we will compare the
(3" results obtained from various averaging schemes.
There are other options in obtain the averaged current. We
refer to the setup shown in Fig. 1. If the detection is along IV. RESULTS AND DISCUSSION

line AB, the averaged current vector may be obtained as The frequency band structure is plotted in Fig. 2. A com-

- 1 (B . plete band gap is shown between frequencies of 0.22 and
(Jnp) = L_J dxJ. (22)  0.28. Just below the complete gap, there is a regime of par-
AB-A tial band gap in which waves are not allowed to travel along
If the detection is on lineBC, the averaged current vector the I'X or [10] direction. We will consider waves two fre-
will be guencies: one is at 0.16, which is in the first passing band,
1 (® and the other is at 0.19, which is within the partial band gap.
(Jep) = L_f dyJ. (23

CBJC

A. Two-dimensional imaging of energy and energy current

HereL,g andLcg denote the lengths of the two sides of the fields

unit cell. We may also consider the sum of these two aver- First we study the spatial behavior of the energy density

aged current if the detection is made on bétB andBC.  fie|gs and the local flows of the eigenmodes which are char-

Correspondingly, there are other three possibilities. acterized by the Bloch wave vectors. The current is com-
Case 4<‘]CB>y/<‘]CB>x from Eq.(23). The associated angle puted by Eq(8), while the density field is calculated by Eq.

is (9). The results are shown in Fig. 3.
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Passing band Partial bandgap which is close to the direction dfl0]. That is, the energy
14 18 flows are nearly vertical, but they cannot be exactly vertical,
- as the direction of10] is a forbidden direction.

When the direction of the Bloch vector is tilted more and
i more away from the directiofilO], an interesting feature
os prevails. That is, the currents eventually tend to flow into the
direction of 'M—i.e., the [11] direction. This feature is
clearly demonstrated by the examples in Fig&2B 3(b3)
and for which the Bloch vector points to the angles of 30°

Y axis

X axis

14 18 and 45°, respectively.
Comparing the results for the passing band in the left
12 L panel and the results for the partial band gap in right panel of

Fig. 3, we may conclude that the electromagnetic flows in
periodic structures or photonic crystals will highly depend on
the band structures. There are significant differences in the
current behavior between the situation in which the fre-
quency is located in a passing band and the case in which the
frequency is within a partial band gap. The result shown by

Y axis

14

16 Fig. 3(b2) suggests that an effect of the partial band gap is to
12 bend the current towards a direction which is to avoid the
2 12 forbidden direction as much as possible; in the present case,
. > it is the direction ofl'M or [11]. Such a feature may render
06 possible new applications of partial band gaps in manipulat-

ing EM waves in optoelectronic devices. The results in Fig. 3
also show that both the energy fields and the current fields
R are not uniform inside the unit cell. This feature indicates
FIG. 3. The imaging of the intensity field&| and the current of  that the energy velocity is also not uniform. The energy is
the eigenmodes. Two frequencies are taken: 0.16 and 0.19 for th@ore concentrated within the regimes occupied by the scat-
left and right panel, respectivelyal) IZ:(O.7771-/a,0)—i.e., the  terers.
Bloch vector points to an angle of 0°% (a2
}Z:(O.Gen/a,o.38n/a)—i.e., the Bloch vector points to an angle of
30°; (a3 |Z=(0.544T/a,0.5447/a)—i.e., the Bloch vector points to
an angle of 45°%b1) K=(0.997/a, 0.427/a)—i.e., the Bloch vector ~ The results in Fig. 3 indicate that the local energy current
points to an angle of 23%b2) K=(0.87/a,0.51r/a)—i.e., the 1S Not uniform within a unit cell of a periodic structure. How
Bloch vector points to an angle of 30%(b3 K to de_scrlbe th(_e o_verall energy flow in such_a nonunn_‘orm
=(0.697/a,0.697/a)—i.e., the Bloch vector points to an angle situation of peno_dlc structures thus poses an important issue.
of 45°. As described in Sec. Il B, we mentioned that the common
theoretical approach is based on the equivalence theorem be-
The left and right panels of Fig. 3 describe the result fortween the group velocity and the averaged energy velocity
frequencies 0.16 and 0.19, respectively. The former lieg2]. The average is taken over the whole volume in three
within the first passing band, whereas 0.19 is within the firsdimensions or the whole area in two dimensions, which in-
partial-band-gap regime. Within this partial band, the waveslude the volumes or the areas occupied by the scatterers. In
are forbidden from propagation along thX direction—i.e., actual experiments or observations, however, it may be dif-
[10]. For each frequency, we have considered three eigerficult to probe the whole volume or the whole area to deduce
modes represented by three Bloch vectors which are given ithe information of the averaged energy current. In particular,
the figure caption. The two principal directions of the unitthe currents or density within the volumes or the areas occu-
cell, '’X andI'M, are also shown in the figure. pied by the scatterers are hard to detect. As matter of fact,
Here we observe the following. Figure 3 clearly showsthere is no report on detecting the energy or energy current
that the local energy flow and energy intensity are eitheover the whole volume or the area to our best knowledge.
uniform or isotropic within the unit cells. First, we discuss The usual detection is made either at one particular spatial
the case of the passing band(al), (a2, and(a3). Overall,  point or on a certain surface. In addition, it is often the in-
the flows of the energy indicated by the black arrows tend tdensity field that is measured.
flow along the direction indicated by the Bloch vectors. This  In this section, we will compare the results obtained from
feature is more obvious for the local current within the di-the various averaging schemes outlined in Sec. Ill B. The
electric cylinders. For the frequency within the partial gap,results will be compared with those obtained by the GVA.
however, we observe that most of the current flows may noEor brevity, yet without losing generality, we consider the
be along the direction of the Bloch vector. Figuréb®  two frequencies from Fig. 3: 0.16 and 0.19; one is in the
shows that for small angles with reference to fh6] direc-  passing band and the other one is within the partial-band-gap
tion, all the local currents tend to flow along the directionregime.

B. Comparison of different methods obtaining the averaged
currents

046617-5



C.-H. KUO AND Z. YE

PHYSICAL REVIEW E70, 046617(2004)

average is taken over the whole area of the unit cell—fully

Direction of the Bloch vectors(6)

Direction of the Bloch vectors (6)

(a) Pa'ssing t;and ' . . o
s n agree with the results from the GVA. This verifies the
£ 4000 ol T equivalence theorem. It can be also seen that the results from
§ X cased H scheme 3 also agree reasonably well with the GVA. This
© Group velocity . . . . . . .
S sop * implies that as long as the current inside a periodic medium
5 . can be measured, the group velocity can be well deduced by
O 20t 3 the averaging scheme, no matter whether the areas occupied
S . by the scatterers are excluded or not. The situation is notice-
2 10} 2 ably different for averaging scheme 1, in which the informa-
(= 5 tion relies on the measurements along the two boundaries of
: 5 ; s T the unit cell. This scheme can reproduce the results of the
0 5 10 15 20 25 30 35 40 45

GVA considerably well for the passing band case in Fi@.4
but fails for most of the Bloch wave vectors in the partial-
band-gap case in Fig(H). In the later case, the agreement

o | Paiafband gap N recovers as the angle approaches 45°—i.e., as the direction
: sl * B ceoepaoin of the Bloch vector approaches that BM. In case 1, we
8 . have excluded the parts occupied by the scatterers in the
2 el . integration.
] x We have also compared the three other averaging
5 ok e N - = schemes. The results are presented in Fig. 5. Here, we have
g o i considered both the situation in which the areas occupied by
'§ a5l : g the scatterergcylinderg are included and the case in which
E these areas are excluded. Here we observe the followdng.
For both the passing-band and partial-band-gap cases, the
% 25 30 35 20 25 average over any single side of the photonic crystal will ei-

ther overestimatécase 4 or underestimatécase 5the angle
of the group velocity, no matter whether the areas of the

FIG. 4. Comparison of four different ways obtaining the aver- cylinders are included or not. In other words, the group ve-

aged EM current in a unit cell. The three cases are .from Eqs}ocity will not represent the energy current averaged only
(19<21), respectively. The results from the GVA are obtained from along one observation line, as represented by the results in

Eq. (19).

cases 4 and 5. Relatively speaking, when the contributions
from the areas of cylinders are included, the results move

First, we compare the first three cases of averaging andloser to that obtained from the GVA2) The results from
the GVA. The three scenarios are given by Ed®)—21),

respectively. The results are shown in Fig. 4. Here the direcGVA, no matter whether the areas of the cylinders are in-
tions of various averaged currents and the group velocity areluded or not. This feature implies that this averaging

scheme 6 are in excellent agreement with the results from the

plotted against the direction of the Bloch wave vectors. Thescheme is a good candidate in inferring the group velocity of
directions are represented by the angles of the correspondimgpotonic crystals when the energy density and energy current
vectors with reference to theaxis. inside the crystals cannot be readily probed.

For either the passing band or the partial-band-gap cases, Some common features can be discerned from Figs. 4 and
we see that the results from the averaging scheme 2—i.e., tHfe In the passing-band case, the direction of the group veloc-

70 70
g (a1)Passing band g (b1)Passing band
£ & D> cased > > £ 50 D> cased4 N
[ 50} A cases e 50} A cases >
5 X case6 > = 5 X case6 > =]
[ O Group velocity > © O Group velocity
@ 40 5 5 B 2 4 s ® % B A
% % > ¥, 4 3w >y 8at
c c
A .
g2 o . g2 > ¥ g FIG. 5. Comparison of the results from the
£ 10 ; 5 oa g1 g £ averaging schemes in cases 4, 5, and 6. The re-
B e 20 7 3 3 0 TR YRR sults in the left par_lel are obtained as _the areas
Direction of the Bloch vectors (6) Direction of the Bloch vectors (6) occupied by the cylinders are excluded in the av-
erage, whereas the results in the right panel are
s B e S st s g T — b et obtained when the areas are included. The three
z 120 5 o £ 120 e schemes are from Eq$§24)—(26), respectively.
f:’ 100 O Group velocity g 100 O Group velocity .
5 & 3 X The results from the GVA are obtained from Eq.
- > s s b b £ > (18).
5 ef ¥ 5 60 8 > > > >
$ w CEE A T - 4 %8 ¥ ® =
3 8 A A A A
g 2 A " A A Al £ 20
0 0
20 25 30 20 0 45

35 40
Direction of the Bloch vectors (6)

25 30 35
Direction of the Bloch vectors (6)
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ity is close to that of the Bloch vector. The relation betweenthe causes of the discrepancies between different averaging
the angles of the two is almost linear, referring to Ficel4 schemes.

and Fig. %al) and %b1). For the first partial-band-gap situ-

ation, the angle of the group velocity decreases as the angle V. SUMMARY AND CONCLUDING REMARKS

of the Bloch vectoK increases. Actually as long as the angle  \y\e have considered the electromagnetic propagation in
of the Bloch wave vector exceeds 25 degree, the angle of thgyo-dimensional periodic arrays of dielectric cylinders em-

group velocity saturates to the value of 45°. This indicategyedded a uniform medium. The frequency band structure is
that partial gaps tend to bend currents into certain directionggomputed using the standard plane-wave expansion method,
gllowing fo_r possible novel _applications of photonic crystalsgng the corresponding eigenmodes are obtained subse-
in the partial-band-gap regim¢&6]. We have done further quently. The spatially dependent optical flows of the eigen-

simulations and found that these features are also true fofodes are calculated by a direct computational approach. A
other frequencies in the first passing band and first partigley averaging schemes for the energy flows are discussed.

band gap. The results are compared to those obtained by the common
group velocity approach which is based upon the group ve-
C. Energy density and energy flow in photonic crystals locity calculation. We have considered both the case in

From Fig. 3, we see that the spatial distribution of thewhich the frequency lies within passing band and the situa-

energy density and the energy current is highly nonunifornfi©n in which the frequency is in the range of a partial band
and anisotropic in the unit cell. This will also indicate that 92P- It is shown that some average schemes may reproduce
well the results of the GVA. With these schemes, the group

R . . ) . velocity can be deduced in measurements. The research pro-
UK. bemg given In Eq_s(8)_ an_d (9), is also be nonu_nlform. vides useful information about how to obtain the group ve-
This will have some implications on the observzinon of theIocity and what information the traditional GVA can provide.
energy density and energy flows. Since the curdeatuals Finally we make a note on the experimental adventure. As
Uve, then with a given current magnitude, a larger local en-3 matter of fact, the exploration of the comparison between
ergy density(intensity implies a smaller velocity. For in-  the theoretical and experimental results of the group velocity
stance, consider two current vectdisandJ,, with the same  in more than one-dimensional periodic structures is relatively
magnitude, but perpendicular to each other. Clearly, the sunscarce. As far as we can search for, the work of Ref] was
mation of the two vectorsiT:51+52, will give a total vector the first, perhgps also the only one, to compare the the.ore.ti-
which lies between the two vectors. If the magnitudes of the@l and experimental results of the acoustic group velocity in
two corresponding current velocities are not equal, then th@0re than one dimensional periodic structures. The work
larger is the velocity magnitude, the smaller will be the en-Was done, however, on sonic crystals rather than on PC’s. As
ergy density. As a result, the apparent energy density fieléndicated by Fig. 7 of Ref.14], the discrepancy between the

. . Lo : theoretical and experimental results can be quite significant
will not be aligned along the direction of the total curréit

This implies that the current flow may not be readily obtain-and is also sensitive to the size of the crystals. We wish that

able by just measuring the energy intensity field. We mayterl(%lopr;et;ennst work would stimulate further  experimental

also look at this problem from another perspective. The cur-
rent .flow deduced from the group_velocity approach or the ACKNOWLEDGMENTS

spatially averaged current method in cases 2 and 3, say, may
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the local energy velocity, defined as= 3,2/U,g with j,g and
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