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We consider electromagnetic propagation in two-dimensional photonic crystals, formed by parallel dielectric
cylinders embedded a uniform medium. The frequency band structure is computed using the standard plane-
wave expansion method, and the corresponding eigenmodes are obtained subsequently. The optical flows of the
eigenmodes are calculated by a direct computation approach, and several averaging schemes of the energy
current are discussed. The results are compared to those obtained by the usual approach that employs a group
velocity calculation. We consider both the case in which the frequency lies within passing band and the
situation in which the frequency is in the range of a partial band gap. The agreements and discrepancies
between various averaging schemes and the group velocity approach are discussed in detail. The results
indicate that the group velocity can be obtained by an appropriate averaging method. Existing experimental
methods are also discussed.
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I. INTRODUCTION

Photonic crystals(PC’s) are usually made of periodically
structured materials which are sensitive to electromagnetic
waves and have been studied both intensively and exten-
sively [1–4]. Research of waves in periodic media was first
put on a theorematic basis by Bloch[5] and Brillouin [6]
towards electronic systems. An early survey was given in the
excellent textbook in[2,7]. The general aspects of electro-
magnetic waves in photonic crystals are furthered reviewed
in Refs.[2–4]. A comprehensive survey of the literature can
be referred to Ref.[8].

The propagation of electromagnetic waves in crystal
structures is one of the top issues in the research of photonic
crystals. The common theoretical approach to electromag-
netic propagation in periodic media has been given in Ref.
[2] and may be summarized as follows. The Maxwell equa-
tions are first derived for waves in periodic media. By the
Bloch theorem, the solution can be expanded in terms of
plane waves. The solution is then substituted into the gov-
erning equations to obtain an eigenequation that determines
the dispersion relations between the frequency and the wave
vector that lies within the first Brillouin zone. These relations
are termed as frequency band structures. Since it has been
proved [2,9] that the averaged energy velocity equals the
group velocity which can be obtained as the gradient of the
dispersion relations with respect to the space of wave
vectors—i.e., vWg;¹KW v—the investigation of electromag-
netic propagation in periodic structures is thus reduced to the
calculation of the group velocity from the band structures.
This approach may be termed as the group velocity approach
(GVA).

Since the average of the energy velocity, represented by

the Poynting vectorkSWl,kEW 3HW l, is performed over the
whole unit cell of periodic media, a few questions may be

asked about this group velocity approach. The first question
is whether such an averaged energy flow can fully depict
actual electromagnetic energy flows in periodic media. Sec-
ond, since in actual measurements it is often hard to detect
physical quantities within the periodic media, how to obtain
the group velocity without having to put a detector into the
media needs also to be considered. Deducing the group ve-
locity from practical measurements is in fact an important
task in photonic crystal research. Explicitly, the question is
how to relate practical measurements with the group velocity
which can be derived theoretically from the band structure
calculation.

The purpose of the present paper is twofold. One is to
examine the question of how well the GVA can describe the
actual electromagnetic(EM) energy flow in periodic struc-
tures. Such a question has also been asked recently from a
different perspective[10]; it is shown that for a photonic
crystal of finite size, the existence of evanescent modes near
the interfaces will make the GVA invalid for probing the
propagating direction of monochromatic wave packets. Here
we will not consider the finite-size effect. We compare the
averaged energy flow obtained from the GVA with results
from direct computation of the energy current. The second is
to consider the issue how to obtain the group velocity from
practical perspectives. Various schemes are proposed to ob-
tain the averaged current and compared, so to find the appro-
priate schemes in deducing the group velocity in practical
measurements.

There are mainly two experimental ways of obtaining the
group velocity[11–15]. One is to measure the peak delays of
the transmitted pulses through a slab of periodic structures.
The second method is to measure the phase speed first and
then find the group velocity from the derivative of the dis-
persion curve. Both methods can obtain the group velocity
along certain directions—i.e., the component along the mea-
suring directions. For example, Pageet al. [14] used the first
method to measure the group velocity along one direction for
the sonic crystals. For highly nonuniform and anisotropic*Electronic address: zhen@shaw.ca
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PC’s—i.e., the energy flow and intensity are spatially inho-
mogeneous and direction dependent—proper averaging
schemes and measurements at different orientations have to
be taken in order to obtain the full picture of the group ve-
locity. Additionally, there is a subtle point. As given later, the

group velocity vWg=¹W KW v corresponds to spatially averaged
energy flows. How the spatial average group is related to the
averaging from a time series of signals in the measurement is
not immediately clear from the mathematical point of view.
To our best knowledge, these questions have not been con-
sidered in the literature.

To simplify our discussion yet without losing generality;
we will only consider the propagation of electromagnetic
waves in two-dimensional periodic media—i.e., two-
dimensional photonic crystals—which are made of arrays of
dielectric cylinders. A reason for using this type of system is
that the systems are experimentally ready, and therefore the
conclusion derived from the present paper can be verified.
The significance of the present research is twofold. First, it
provides some useful information about how to obtain the
group velocity. Second, it shows under what conditions the
group velocity approach is valid.

The paper is structured as follows. In the next section, we
will present the usual formulation of Maxwell’s equations for
EM waves in periodic structures. The energy flow will be
formulated, and the GVA will be outlined in general. In Sec.
III, the particular system will be discussed, and a few aver-
aging schemes of the energy current will be proposed. The
numerical results for a number of situations will be presented
in Sec. IV. The paper will be concluded by a summary in
Sec. V.

II. GENERAL FORMULATION

A. Retrospect: Bloch wave solution, energy current,
and energy density

The EM waves in two-dimensional media can be sepa-
rated into two cases of polarization:(1) the s polarization or
the E polarization—that is, the electric field is along thez
axis perpendicular to the plane of propagation, which is the
plane of the periodicity—and(2) the p polarization or theH
polarization, with the magnetic field being perpendicular to
the plane of propagation. Here we outline the determining
equations for EM propagation in two-dimensional periodic
media. The details can be referred to in Refs.[2,3]

For both polarizations, the governing equation can be uni-
fied as[4]

¹W ·S1

r
¹W psrWdD +

v2

c2srWdq
psrWd = 0, s1d

where c2=c0
2/esrWdmsrWd with c0 being the light speed in

vacuum, andr andq are two-dimensional periodic functions,
depending on the properties of the medium. For thes polar-
ization, p stands forEz, with rsrWd=msrWd andqsrWd=msrWd. For
the p polarization,p denotes the magnetic fieldHz perpen-
dicular to the wave propagation. In this case,rsrWd=esrWd and
qsrWd=esrWd.

Due to the periodicity, we can make the expansions

1

r
= o

GW
ssGW deiGW ·rW,

1

c2q
= o

GW
xsGW deiGW ·rW, s2d

whereGW is the reciprocal vectors.
By Bloch’s theorem, the solution to Eq.(1) can be ex-

pressed as

pKW srWd = eiKW ·rWuKW srWd, s3d

whereKW is the Bloch vector that lies within the first Brillouin
zone anduKW is a periodic function with the periodicity of the
medium; therefore,pKW is the eigenfield corresponding to the

Block vectorKW . The functionuKW can be expanded as

uKW srWd = o
GW

AKW sGW deiGW ·rW. s4d

Substituting Eqs.(2) and (3) into Eq. (1), we obtain

o
GW 1

hssGW 1dfsKW + GW 2d · sKW + GW 2 + GW 1dg − v2xsGW 1djAKW sGW 2d = 0.

s5d

From this equation, we can find a secular equation that de-

termines the dispersion relation betweenv andKW :

dethssGW 1dfsKW + GW 2d · sKW + GW 2 + GW 1dg − v2xsGW 1djGW 1,GW 2
= 0.

s6d

Once the dispersion relation is determined, the coefficients

AKW sGW d can be obtained from Eq.(5). The EM waves can be
subsequently obtained from Eqs.(3) and (4).

When either the electricalE or magnetic fieldH is deter-
mined, corresponding to thes or p polarization, respectively,

the magnetic or electric field for the Bloch vectorKW can be
determined from

¹W 3 HW KW = − ivesrWdEW KW , or ¹W 3 EW KW = ivmsrWdHW KW , s7d

where we have assumede−ivt time dependence.
By Eq. (7), the time-averagedflux of energy at any spatial

point is subsequently obtained from

JWKW srWd =
1

2
RefEW KW srWd 3 HW

KW
!srWdg, s8d

where “!” refers to the complex conjugate operation. And
the time-averaged energydensityis

UKW srWd =
1

4
fesrWduEKW srWdu2 + msrWduHKW srWdu2g. s9d

From these two equations, we can directly calculate the EM
energy flow and density.

B. Group velocity approach

In principle, the EM propagation in periodic media can be
inferred from a direct calculation using Eqs.(8) and (9).
However, it is common to use the group velocity method to
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discern the EM energy flows in periodic media. This ap-
proach is based on the following theorem[2]. The group
velocity in periodic media is defined as

vWg ; ¹W KW v. s10d

The energy velocity in the periodic media is defined as

kvWel =

1

V
E JWKWd

3r

1

V
E Ud3r

;
kJWKW l

kUKW l
, s11d

whereV is the volume of a unit cell, and the integration is
performed in the unit cell. In two dimensions, this equation
is reduced to

kvWel =

1

S
E JWKWd

2r

1

S
E UKWd

2r

;
kJWKW l

kUKW l
, s12d

with S being the area of a unit cell and the integration being
restricted to the unit cell. It can be proved[2] that

kvWel = vWg = ¹W KW v. s13d

This equation will be referred to as the equivalency theorem.
By Eq. (13), the task of finding the EM propagation in

periodic media is reduced to calculating the group velocity—

i.e., vWg=¹W KW v. This procedure may be called the group veloc-
ity approach. As the group velocity is relatively easy to be
calculated from the band structures, this method has been
widely used.

From Eq.(12), we see that the spatial average of the cur-
rent is taken over the whole area of the unit cell for two-
dimensional cases. Experimentally, the energy flux is nor-
mally determined by measuring currents flowing through
certain surfaces. In the following, we will examine whether
and when the spatially averaged currents can represent the
actual flows. We will examine a few averaging schemes.

III. SYSTEMS AND THE VARIOUS AVERAGING
SCHEMES

In the following, we will compare the energy flux ob-
tained from the GVA with the results from the direct compu-
tation of the current given by Eq.(8).

A. System

The systems considered here are two-dimensional photo-
nic crystals made of arrays of parallel dielectric cylinders
placed in a uniform medium, which we assume to be air.
Such systems are common in both theoretical simulations or
experimental measurements of two-dimensional PC’s[3].
For brevity, we only consider theE-polarized waves(TM
mode); that is, the electric field is kept parallel to the cylin-
ders. The following parameters are used in the simulation.
(1). The dielectric constant of the cylinders is 14, and the

cylinders are arranged to form a square lattice.(2). The lat-
tice constant isa, and the radius of the cylinders is 0.3a; in
the computation, all lengths are scaled by the lattice constant.
(3) The unit for the angular frequency is 2pc/a. After scal-
ing, the systems become dimensionless; thus, the features
discussed here would be applicable to a wider range of
situations.

B. Various averaging schemes

To compare the energy current determined from the GVA
with that obtained from the direct computation method, we
take the following procedure. Due to the periodicity and
symmetry, it is sufficient to just consider the energy current
in a unit cell, which takes the square shape. For a given

frequency, a Block wave vectorKW can be determined from
the secular equation for the band structure in Eq.(6). The

group velocity will then be calculated forKW from the band
structure according to Eq.(10). This consideration is illus-
trated by Fig. 1. Here, the coordinates are shown in the
figure.

According to the aforementioned equivalency theorem,
the direction of the group velocity will be the direction of the
spatially averaged EM energy current or velocity given by
Eq. (12)—i.e.,

kJWl =
1

S
E

S

d2rWJW . s14d

We note that the integration is performed over the whole
area of the unit cell, which includes the areas occupied by the
scatterers. In actual experiments, it is often difficult to probe
the currents within the areas taken by the scatterers; there-
fore, we may replace the whole integration by a partial
integration:

kJ8W l =
1

S8
E

S8
d2rWJW . s15d

Here the integration is performed over the areaS8 which
excludes the areas occupied by the
scatterers.

FIG. 1. Conceptual layout of the EM energy flow in a unit
cell.
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In practice, the EM energy current through this unit cell
can also be calculated from the flux across the two sides of
the cell denoted byAB andBC—i.e.,

Iy , E
AB

dxJW · ŷ, Ix , E
BC

dyJW · x̂. s16d

HereJW is given by Eq.(8).
We will compare the results in Eqs(14)–(16) with that

obtained in Eq.(13) by the GVA:

Iy
GVA, s¹W KW vd · ŷ, Ix

GVA, s¹W KW vd · x̂. s17d

In the present paper, we label the averaged current in Eq.
(16) as case 1, that in Eq.(14) as case 2, and that in Eq.(15)
as case 3.

To simplify our discussion, we will compare the ratio be-
tween the averaged current in two directions.

The GVA case. The angle of the group velocity is deter-
mined as

fGVA= tan−1S¹W KW v · ŷ

¹W KW v · x̂
D . s18d

Case 1: Iy/ Ix from Eq. (16). We represent the ratio by the
angle

f1 = tan−1S Iy

Ix
D , s19d

Case 2: kJWly/ kJWlx from Eq. (14). The corresponding angle
is

f2 = tan−1S kJWly

kJWlx

D . s20d

Case 3: kJ8W ly/ kJ8W lx from Eq. (15). The corresponding
angle is

f3 = tan−1S kJ8W ly

kJ8W lx

D . s21d

There are other options in obtain the averaged current. We
refer to the setup shown in Fig. 1. If the detection is along
line AB, the averaged current vector may be obtained as

kJWABl =
1

LAB
E

A

B

dxJW . s22d

If the detection is on lineBC, the averaged current vector
will be

kJWCBl =
1

LCB
E

C

B

dyJW . s23d

HereLAB andLCB denote the lengths of the two sides of the
unit cell. We may also consider the sum of these two aver-
aged current if the detection is made on bothAB and BC.
Correspondingly, there are other three possibilities.

Case 4: kJWCBly/ kJWCBlx from Eq.(23). The associated angle
is

f4 = tan−1S kJWCBly

kJWCBlx

D . s24d

Case 5: kJWABly/ kJWABlx from Eq.(22). The associated angle
is

f5 = tan−1S kJWABly

kJWABlx

D . s25d

Case 6: skJWABl+kJWCBldy/ skJWABl+kJWCBldx from Eqs. (22)
and (23). The associated angle is

f6 = tan−1S skJWABl + kJWCBldy

skJWABl + kJWCBldx

D . s26d

Since the energy or the current fields in the areas occupied
by the scatterers may not be easy to detect, there is another
possibility in cases 4, 5, and 6. That is, the contributions
from these areas are excluded. Later we will compare the
results obtained from various averaging schemes.

IV. RESULTS AND DISCUSSION

The frequency band structure is plotted in Fig. 2. A com-
plete band gap is shown between frequencies of 0.22 and
0.28. Just below the complete gap, there is a regime of par-
tial band gap in which waves are not allowed to travel along
the GX or [10] direction. We will consider waves two fre-
quencies: one is at 0.16, which is in the first passing band,
and the other is at 0.19, which is within the partial band gap.

A. Two-dimensional imaging of energy and energy current
fields

First we study the spatial behavior of the energy density
fields and the local flows of the eigenmodes which are char-
acterized by the Bloch wave vectors. The current is com-
puted by Eq.(8), while the density field is calculated by Eq.
(9). The results are shown in Fig. 3.

FIG. 2. The band structure of a square lattice of dielectric cyl-
inders. The lattice constant isa and the radius of the cylinders is
0.3a. GM andGX denote the[11,10] directions, respectively.
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The left and right panels of Fig. 3 describe the result for
frequencies 0.16 and 0.19, respectively. The former lies
within the first passing band, whereas 0.19 is within the first
partial-band-gap regime. Within this partial band, the waves
are forbidden from propagation along theGX direction—i.e.,
[10]. For each frequency, we have considered three eigen-
modes represented by three Bloch vectors which are given in
the figure caption. The two principal directions of the unit
cell, GX andGM, are also shown in the figure.

Here we observe the following. Figure 3 clearly shows
that the local energy flow and energy intensity are either
uniform or isotropic within the unit cells. First, we discuss
the case of the passing band in(a1), (a2), and(a3). Overall,
the flows of the energy indicated by the black arrows tend to
flow along the direction indicated by the Bloch vectors. This
feature is more obvious for the local current within the di-
electric cylinders. For the frequency within the partial gap,
however, we observe that most of the current flows may not
be along the direction of the Bloch vector. Figure 3(b1)
shows that for small angles with reference to the[10] direc-
tion, all the local currents tend to flow along the direction

which is close to the direction of[10]. That is, the energy
flows are nearly vertical, but they cannot be exactly vertical,
as the direction of[10] is a forbidden direction.

When the direction of the Bloch vector is tilted more and
more away from the direction[10], an interesting feature
prevails. That is, the currents eventually tend to flow into the
direction of GM—i.e., the [11] direction. This feature is
clearly demonstrated by the examples in Figs. 3(b2) 3(b3)
and for which the Bloch vector points to the angles of 30°
and 45°, respectively.

Comparing the results for the passing band in the left
panel and the results for the partial band gap in right panel of
Fig. 3, we may conclude that the electromagnetic flows in
periodic structures or photonic crystals will highly depend on
the band structures. There are significant differences in the
current behavior between the situation in which the fre-
quency is located in a passing band and the case in which the
frequency is within a partial band gap. The result shown by
Fig. 3(b2) suggests that an effect of the partial band gap is to
bend the current towards a direction which is to avoid the
forbidden direction as much as possible; in the present case,
it is the direction ofGM or [11]. Such a feature may render
possible new applications of partial band gaps in manipulat-
ing EM waves in optoelectronic devices. The results in Fig. 3
also show that both the energy fields and the current fields
are not uniform inside the unit cell. This feature indicates
that the energy velocity is also not uniform. The energy is
more concentrated within the regimes occupied by the scat-
terers.

B. Comparison of different methods obtaining the averaged
currents

The results in Fig. 3 indicate that the local energy current
is not uniform within a unit cell of a periodic structure. How
to describe the overall energy flow in such a nonuniform
situation of periodic structures thus poses an important issue.

As described in Sec. II B, we mentioned that the common
theoretical approach is based on the equivalence theorem be-
tween the group velocity and the averaged energy velocity
[2]. The average is taken over the whole volume in three
dimensions or the whole area in two dimensions, which in-
clude the volumes or the areas occupied by the scatterers. In
actual experiments or observations, however, it may be dif-
ficult to probe the whole volume or the whole area to deduce
the information of the averaged energy current. In particular,
the currents or density within the volumes or the areas occu-
pied by the scatterers are hard to detect. As matter of fact,
there is no report on detecting the energy or energy current
over the whole volume or the area to our best knowledge.
The usual detection is made either at one particular spatial
point or on a certain surface. In addition, it is often the in-
tensity field that is measured.

In this section, we will compare the results obtained from
the various averaging schemes outlined in Sec. III B. The
results will be compared with those obtained by the GVA.
For brevity, yet without losing generality, we consider the
two frequencies from Fig. 3: 0.16 and 0.19; one is in the
passing band and the other one is within the partial-band-gap
regime.

FIG. 3. The imaging of the intensity fieldsuEW u and the current of
the eigenmodes. Two frequencies are taken: 0.16 and 0.19 for the

left and right panel, respectively.(a1) KW =s0.77p /a,0d—i.e., the
Bloch vector points to an angle of 0°; (a2)

KW =s0.66p /a,0.38p /ad—i.e., the Bloch vector points to an angle of

30°; (a3) KW =s0.54p /a,0.54p /ad—i.e., the Bloch vector points to

an angle of 45°.(b1) KW =s0.99p /a,0.42p /ad—i.e., the Bloch vector

points to an angle of 23°;(b2) KW =s0.87p /a,0.51p /ad—i.e., the

Bloch vector points to an angle of 30°;(b3) KW

=s0.69p /a,0.69p /ad—i.e., the Bloch vector points to an angle
of 45°.
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First, we compare the first three cases of averaging and
the GVA. The three scenarios are given by Eqs.(19)–(21),
respectively. The results are shown in Fig. 4. Here the direc-
tions of various averaged currents and the group velocity are
plotted against the direction of the Bloch wave vectors. The
directions are represented by the angles of the corresponding
vectors with reference to thex axis.

For either the passing band or the partial-band-gap cases,
we see that the results from the averaging scheme 2—i.e., the

average is taken over the whole area of the unit cell—fully
agree with the results from the GVA. This verifies the
equivalence theorem. It can be also seen that the results from
scheme 3 also agree reasonably well with the GVA. This
implies that as long as the current inside a periodic medium
can be measured, the group velocity can be well deduced by
the averaging scheme, no matter whether the areas occupied
by the scatterers are excluded or not. The situation is notice-
ably different for averaging scheme 1, in which the informa-
tion relies on the measurements along the two boundaries of
the unit cell. This scheme can reproduce the results of the
GVA considerably well for the passing band case in Fig. 4(a),
but fails for most of the Bloch wave vectors in the partial-
band-gap case in Fig. 4(b). In the later case, the agreement
recovers as the angle approaches 45°—i.e., as the direction
of the Bloch vector approaches that ofGM. In case 1, we
have excluded the parts occupied by the scatterers in the
integration.

We have also compared the three other averaging
schemes. The results are presented in Fig. 5. Here, we have
considered both the situation in which the areas occupied by
the scatterers(cylinders) are included and the case in which
these areas are excluded. Here we observe the following.(1)
For both the passing-band and partial-band-gap cases, the
average over any single side of the photonic crystal will ei-
ther overestimate(case 4) or underestimate(case 5) the angle
of the group velocity, no matter whether the areas of the
cylinders are included or not. In other words, the group ve-
locity will not represent the energy current averaged only
along one observation line, as represented by the results in
cases 4 and 5. Relatively speaking, when the contributions
from the areas of cylinders are included, the results move
closer to that obtained from the GVA.(2) The results from
scheme 6 are in excellent agreement with the results from the
GVA, no matter whether the areas of the cylinders are in-
cluded or not. This feature implies that this averaging
scheme is a good candidate in inferring the group velocity of
photonic crystals when the energy density and energy current
inside the crystals cannot be readily probed.

Some common features can be discerned from Figs. 4 and
5. In the passing-band case, the direction of the group veloc-

FIG. 4. Comparison of four different ways obtaining the aver-
aged EM current in a unit cell. The three cases are from Eqs.
(19)–(21), respectively. The results from the GVA are obtained from
Eq. (18).

FIG. 5. Comparison of the results from the
averaging schemes in cases 4, 5, and 6. The re-
sults in the left panel are obtained as the areas
occupied by the cylinders are excluded in the av-
erage, whereas the results in the right panel are
obtained when the areas are included. The three
schemes are from Eqs.(24)–(26), respectively.
The results from the GVA are obtained from Eq.
(18).
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ity is close to that of the Bloch vector. The relation between
the angles of the two is almost linear, referring to Fig. 4(a)
and Fig. 5(a1) and 5(b1). For the first partial-band-gap situ-
ation, the angle of the group velocity decreases as the angle

of the Bloch vectorKW increases. Actually as long as the angle
of the Bloch wave vector exceeds 25 degree, the angle of the
group velocity saturates to the value of 45°. This indicates
that partial gaps tend to bend currents into certain directions,
allowing for possible novel applications of photonic crystals
in the partial-band-gap regimes[16]. We have done further
simulations and found that these features are also true for
other frequencies in the first passing band and first partial
band gap.

C. Energy density and energy flow in photonic crystals

From Fig. 3, we see that the spatial distribution of the
energy density and the energy current is highly nonuniform
and anisotropic in the unit cell. This will also indicate that

the local energy velocity, defined asvWe;JWKW /UKW with JWKW and
UKW being given in Eqs.(8) and (9), is also be nonuniform.
This will have some implications on the observation of the

energy density and energy flows. Since the currentJW equals
UvWe, then with a given current magnitude, a larger local en-
ergy density(intensity) implies a smaller velocity. For in-

stance, consider two current vectorsJW1 andJW2, with the same
magnitude, but perpendicular to each other. Clearly, the sum-

mation of the two vectors,JWT=JW1+JW2, will give a total vector
which lies between the two vectors. If the magnitudes of the
two corresponding current velocities are not equal, then the
larger is the velocity magnitude, the smaller will be the en-
ergy density. As a result, the apparent energy density field

will not be aligned along the direction of the total currentJWT.
This implies that the current flow may not be readily obtain-
able by just measuring the energy intensity field. We may
also look at this problem from another perspective. The cur-
rent flow deduced from the group velocity approach or the
spatially averaged current method in cases 2 and 3, say, may
not be able to describe the apparent energy intensity field
which is actually the quantity to be measured. The inhomo-
geneity and anisotropy in the energy intensity and flow are

the causes of the discrepancies between different averaging
schemes.

V. SUMMARY AND CONCLUDING REMARKS

We have considered the electromagnetic propagation in
two-dimensional periodic arrays of dielectric cylinders em-
bedded a uniform medium. The frequency band structure is
computed using the standard plane-wave expansion method,
and the corresponding eigenmodes are obtained subse-
quently. The spatially dependent optical flows of the eigen-
modes are calculated by a direct computational approach. A
few averaging schemes for the energy flows are discussed.
The results are compared to those obtained by the common
group velocity approach which is based upon the group ve-
locity calculation. We have considered both the case in
which the frequency lies within passing band and the situa-
tion in which the frequency is in the range of a partial band
gap. It is shown that some average schemes may reproduce
well the results of the GVA. With these schemes, the group
velocity can be deduced in measurements. The research pro-
vides useful information about how to obtain the group ve-
locity and what information the traditional GVA can provide.

Finally we make a note on the experimental adventure. As
a matter of fact, the exploration of the comparison between
the theoretical and experimental results of the group velocity
in more than one-dimensional periodic structures is relatively
scarce. As far as we can search for, the work of Ref.[14] was
the first, perhaps also the only one, to compare the theoreti-
cal and experimental results of the acoustic group velocity in
more than one dimensional periodic structures. The work
was done, however, on sonic crystals rather than on PC’s. As
indicated by Fig. 7 of Ref.[14], the discrepancy between the
theoretical and experimental results can be quite significant
and is also sensitive to the size of the crystals. We wish that
the present work would stimulate further experimental
explorations.
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